

Business summary to build and operate biofuels plants under the EPA and California incentive programs

August 14, 2018

JatroRenewables

SUSTAINABLE CHEMISTRY FOR EARTH

Renewable biofuels targeting a \$120bn market

Who We Are

- Manufacturer of renewable biofuels
- BQ9000 biodiesel producer²
- Premium pricing through innovative technology and sustainable sourcing
- In house R&D, design and engineering

Biofuel Market Channels Trucking Municipalities Petroleum refiners •

Platform

- Patented protected technology platform
- Centralized management for multiple plants in the U.S.
- Production cost advantages
- National sales network
- Next generation platform under development

Successful Scale-up . . .

From laboratory through pilot plant to full commercialization

Production control room

Production laboratory

Production facility at CHS, Inc., Annawan, IL

. . . With strong technology platform

Note: The company has built or re-engineered 18 plants, the one pictured above is the first Supercritical. Another is under construction in California with a third to close on its financing in September.

Supercritical technology development, fluids processing expertise and product IP combined with operational know-how

Unique technology deployed at industrial scale

Now building a 2nd Supercritical plant in California

Notes

2. 98% of all biodiesel plants (out of 128) are unable to refine more than 15% FFA feedstocks

3. Only about 5% of plants have distillation

Maximizing Supercritical for profit by processing blends of low cost, high FFA feedstocks

- 98% of existing biodiesel plants are unable to process over 15% FFA feedstocks.
- The cost advantage of *Supercritical* is significant: OPEX and glycerin add \$0.25/gallon; and using a 25% blend of high FFA feedstock adds \$0.23/g to the margin

Notes: 1. Number of lbs per gallon is 7.55

Glycerin is 95% pure as no catalyst is used to contaminate it and typically worth double traditional value.

Supercritical Biodiesel Margin		000,000/year	Feedstock Usage for Biodiesel ¹		
COST OF GOODS SOLD	Units	Per gallon			
Feedstock (>30% FFA)	\$0.00/lb	\$0.00			
Feedstock (<15% FFA) less 2% loss	\$0.28/lb	2.11	Animal Fats		
Production (labor, energy, chemicals)		0.45	Recycled (16) Corn Oil Cooking Oil (10) Concern Canala		
G&A (all other costs)		0.06			
Total Cost of Goods Sold		2.62			
REVENUE					
B99 Biodiesel Heating Oil: 2.14/g)	HO-102	1.12	52%		
Low Carbon Fuel Standard \$191/mt	CI=24	1.76			
Renewable Fuel Standard (D4 RIN) \$0.44/g	x1.5	0.66			
Glycerin (@>95% purity)		0.11			
Total Revenue		3.65	Soy Oil		
TOTAL Annual Revenue		54,750,000	Notes 1. First generation feedstocks used to make biodiesel in the U.S. and		
TOTAL EBITDA Margin		15,390,000	Canada and must be below 15% FFA as plants are unable to process anything higher		
Total EBITDA per gallon		1.03	2. There are about 450 million gallons of trap grease in North America with $FFAs$ as high as 100% that could be used to make bindiesel with		
CAPEX			Supercritical.		
Supercritical Biodiesel plant		\$19,750,000			
Working Capital		4,000,000			
Total Plant Cost w/Working Capital		23,750,000			

Competitive advantage: *Supercritical* will refine high FFA feedstocks. Using just 30% increases EBITDA by \$0.28/gal.(after MIU losses). Plus, operations advantage ~\$0.20/gal.

Location, location, location!

- The biodiesel plant will be co-located with a refiner to take advantage of nearby assets such as storage tanks, rail and loading facilities
- Markets are close to the plant and primarily southern and central California (pops. 27m)
- Bakersfield is an oil producing area but far diminished from its heydays of the '60s and '70s
- There are many stranded assets to leverage.

Plant site location allows for extensive future plant expansion

Biodiesel plant roll-out, revenues and margins Cellulosic Diesel to follow starting about 2025

Year ¹ Operating	BD 15MMgy	CD 15MMgy	Total Plants	Market³ Price/gal (fob)	Gallons (000)	Total Revenue Per Year (000)	Total EBITDA (000)	EBITDA⁵ /gal
2020	1		1	\$3.10	15	\$46	\$10	0.67
2021	1		2	3.20	30	96	21	0.70
2022	3		5	3.25	75	244	54	0.71
2023	2		7	3.20	105	336	74	0.70
2024	2		9	3.15	120	378	83	0.69
2025 <mark>2</mark>	1		10	3.65	170	620	155	0.91
2026		1	11	3.85	325	1251 <mark>4</mark>	313	0.96
2027		3	14	3.75	400	1500	375	0.94
2018		3	17	3.65	475	1733	433	0.91
2029		4	21	3.55	585	2076	623	1.06
2030		4	25	3.45	685	2363	709	1.03
Totals	10	15	25		2,985	10,643	2,850	

Assumptions for the above numbers

Notes

1. Average of 2.4 new plants per year

2. Cellulosic diesel plants

3. Cost per gallon average from past years

4. Margins for cellulosic increase as RIN value for a D7 at about \$2.50/g (by comparison D4 biodiesel is about \$0.70/gal)

5. Assumes Producer negotiates RINs and LCFS

Source: California Air Resources Board (CARB)

Company Structure - Maximum efficiency with central control and autonomous ownership

Differences between #2 Diesel², Biodiesel, Renewable Diesel and Cellulosic Diesel

Properties	#2 Diesel	Biodiesel	Cellulosic Diesel ¹	
Distillation Range	ОК	OK (most not distilled)	Less lubrication degradation Change oil less	
Cetane	Baseline	Good starting	Fast cold starts Less engine noise	
Oxidation Stability	Baseline	< 3 hrs w/o additive (test) 6 month shelf life	No oxygen = no limit Less injector fouling	
Emission CO2, Nox, Particulates	Baseline	Minimum 50% higher	Minimum 60% higher	
Cold Flow Properties, °C	To -40 w/additive	To -20 w/additive	Typically -15; can be refined to -40	
Chemical Composition	Hydrocarbon	Methyl ester	Hydrocarbon Less engine oil thickening	
Solubility of Water	Low	Medium	Very low risk of water absorbsion	
Fuel Consumption	Baseline	Same as baseline	2% to 4% higher than Petrodiesel 3% to 5% lower vs. neat FAME	
Engine Oil Dilution and Deterioration	Baseline	Due to higher boiling temps in distillation, slight chance fuel could contaminate engine	About the same as baseline	
Injector Fouling	Baseline	(Typically not used neat). Would follow additive for petrodiesel	Use typical detergents as petrodiesel especially for corrosion issues	
Engine Power	Baseline	The same	The same except in older engines	

Notes

1. Cellulosic Diesel is the same chemically as Renewable Diesel (both have ASTM designations as D975 Diesel Fuel). However, the difference (and very importantly) is Renewable Diesel is made from the same feedstocks as biodiesel. Cellulosic Diesel is made from cellulosic waste such as woody biomass, municipal solid waste, grasses etc.

2. Also referred to as ultra low sulfur diesel (ULSD)

Management team and experience

Raj Mosali, President and Project Director

Operated a biodiesel plant for five years. Designed and/or reengineered 19 biodiesel plants since 2004. Developed the Supercritical process for transesterifying feedstocks to 100% FFA. Mr. Mosali has an M.S. in Electrical Engineering from Florida Atlantic University.

lan Lawson

Director, Business Development

Develops business and marketing strategies. Has 40 years of experience and has owned successful companies in solar energy, telecommunications, and since 2008, biodiesel production. Mr. Lawson has a B.S. Degree in Communications from Boston University.

John Cooper

Senior Engineer

Co-developed the supercritical process for biodiesel refining.

Sabrina Pennington

Chief Financial Officer

Twenty-four years of experience in business accounting.

Biodiesel Built or Re-engineered Since 2004

- 1. American Ag Fuels, Defiance, OH
- 2. Middletown Biofuels, Harrisburg, PA
- 3. Michigan Biodiesel, Bangor, MI
- 4. Walsh Biofuels, Mauston, WI
- 5. Mt. Coco Products, Philippines
- 6. Imperial Valley Biodiesel, El Centro, CA
- 7. Greenlight Biofuels, Princess Anne, MD
- 8. Western Biodiesel, High Plains, AB, Canada
- 9. African Energy Initiative, Kampala, Uganda
- 10. Jatrodiesel, Miamisburg, OH
- 11. Center Alternatives, Cleveland, OH
- 12. Vanguard Synfuels, Alexandria, LA
- 13. Biovantage Fuels, Belvidere, IL
- 14. Washakie Renewables, UT
- 15. Greenleaf Biofuels, New Haven, CT
- 16. United Refining, PA (NYC project)
- 17. Mid-America Biofuels, North Platte, NE
- 18. CHS, Inc. Ethanol, Annawan, IL (co-located)
- 19. Calgren Renewable Fuels, Pixley, CA (co-located)
- 20. Bio California, Bakersifeld, CA (financing stage)

Above: Vanguard Synfuels biodiesel plant (15MMgy), Alexandria, LA. Jatro increased production to continuous and added esterification to enable refining of animal fat feedstock to 15% FFA (formerly soy only with a maximum of 2% FFA)

1st Generation (D4 & D6 RINs) 2nd Generation (D3 & D7 RINs) Sugars / Cellulosic Natural Oils Starches¹ **Biomass Bioemulsion** Fast Pyrolysis Diesel Catalytic Substitute Conversion Gasification ³ Transesterification Isomerization Catalysis & Aqueous Hydrotreating Phase Reforming Isomerization Hydrotreating Biodiesel⁴ Syngas Cellulosic Diesel⁴ Acid or Enzyme DMF & Jet Fuel Hydrolysis Renewable Diesel² J. Gasoline, Jet Fuel & **BioJet Fuel** Saccharification **Fischer-Tropsch Hydrocarbons** Catalysis Fermentation Renewable Diesel & Jet Fuel Notes 1. Sugars / Starches column: Ethanol, Butanol & ethanol fermentation counts as 1st Gen. Syngas **Hydrocarbons** 2. Feedstock is reacted with hydrogen **ETG Via Catalysis** Fermentation at elevated temp. and pressure 3. Biomass-To-Liquid (BTL) where biomass is gasified into syngas, cleaned then assed over solid metal catalyst 4. Light Grey boxes and blue lines: Biogasoline Ethanol, Methanol, Jatro Renewables pathways (products) Propanol, Butanol